Abstract

Aligning anisotropic nanoparticles using external fields is one of the major obstacles to unlocking their enormous potential for novel applications. The most famous such example is graphene, a 2D family of nanomaterials that has received enormous attention since its discovery. Using graphene to enhance mechanical, thermal, electric or gas barrier properties, imparting antibacterial properties etc., relies to a great extent on the ability to control their orientation inside a matrix material, i.e., polymers. Here we summarize the latest advances on graphene orientation using magnetic fields. The review covers the underlying physics for graphene interaction with magnetic fields, theoretical continuum mechanics framework for inducing orientation, typical magnetic field orientation setups, and a summary of latest advances in their use to enhance the performance of materials. Current trends, limitations of current alignment techniques are highlighted and major challenges in the field are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call