Abstract
An orientation of the lambda DNA during the electrophoresis in agarose gels was measured by a microscopic linear dichroism technique. The method involved staining the DNA with the dye ethidium bromide and measuring under the microscope the polarization properties of the fluorescence field around the electrophoretic band containing the nucleic acid. It was first established that the fluorescence properties of the ethidium bromide-DNA complex were the same in agarose gel and in a solution. Then the linear dichroism method was used to measure the dichroism of the absorption dipole of EB dye bound to lambda DNA. In a typical experiment the orientation of two-tenth of a picogram (2 x 10(-13)g) of DNA was measured. When the electric field was turned on, the dichroism developed rapidly and assumed a steady state value which increased with the strength of the field and with the size of DNA. A linear dichroism equation related the measured dichroism of fluorescence to the mean orientation of the absorption dipole of ethidium bromide and to an extent to which the orientation of this dipole deviated from the mean. The observed development of dichroism in the presence of an electric field was interpreted as an alignment of DNA along the direction of the field. The increase in the steady state value of dichroism with the rise in the strength of the field and with the increase of the size of DNA was interpreted as a better alignment of DNA along the direction of the field and as a smaller deviation from its mean orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.