Abstract
Transient electric birefringence has been used as an analytical tool to study the orientation of DNA in agarose gels, and to study the orientation of the matrix alone. The sign of the birefringence of DNA oriented in an agarose gel is negative, as observed in free solution, indicating that the DNA molecules orient parallel to the direction of the electric field. If the median pore diameter of the gel is larger than the contour length of the DNA molecule, the DNA effectively does not see the matrix and the birefringence relaxation time is the same as observed in free solution. However, if the median pore diameter of the gel is smaller than the contour length of the DNA, the DNA molecule becomes stretched as well as oriented. For DNA molecules of moderate size (less than or equal to 4 kb), stretching in the gel causes the birefringence relaxation times to increase to the values expected for fully stretched molecules. Complete stretching is not observed for larger DNA molecules. The orientation and stretching of DNA molecules in the gel matrix indicates that end-on migration, or reptation, is a likely mechanism for DNA electrophoresis in agarose gels. When the electric field is rapidly reversed in polarity, very little change in the orientation of the DNA is observed if the DNA molecules were completely stretched and had reached their equilibrium orientation before the field was reversed in direction. Hence completely stretched, oriented DNA molecules are able to reverse their direction of migration in the electric field with little or no loss of orientation. However, if the DNA molecules were not completely stretched or if the equilibrium orientation had not been reached, substantial disorientation of the DNA molecules is observed at field reversal. The forced rate of disorientation in the reversing field is faster than the field-free rate of disorientation. Complicated patterns of reorientation can be observed after field reversal, depending on the degree of orientation in the original field direction. The effect of pulsed electric fields on the orientation of the agarose gel matrix itself was also investigated.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.