Abstract
Fluidization of non-spherical particles commonly exists in the biomass utilization and municipal solid waste (MSW) processing industries. In this study, cylindrical particles are used as a typical type of non-spherical particle and its orientation distribution is investigated when being co-fluidized with small spherical bed material. X-ray particle tracking velocimetry (XPTV), based on an X-ray stereography imaging system, is used to measure the 3D orientation of a single tracer particle over a long time period in the fluidized bed. The effects of gas velocity (uf), cylindrical particle mass fraction (ω), particle sphericity (Φ), and bed material size on the orientation distribution of the cylindrical particle are investigated and discussed in detail. An orientation distribution probability density function (PDF) model is proposed based on all experimental results.The distribution probability P of the angle between the cylindrical particle central axis and vertical direction λ across the bed shows two minima in the ranges 0° ≤ λ < 10° and 40° ≤ λ < 50°, and two maxima in the ranges 20° ≤ λ < 30° and 70° ≤ λ < 80°. Increasing uf reduces λ, while the effect of particle sphericity Φ and cylindrical particle mass fraction ω increases with increasing uf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.