Abstract

The magnetic compass sense of migratory songbirds is thought to derive from magnetically sensitive photochemical reactions in cryptochromes located in photoreceptor cells in the birds' retinas. More specifically, transient radical pairs formed by light-activation of these proteins have been proposed to account for the birds' ability to orient themselves using the Earth's magnetic field and for the observation that radiofrequency magnetic fields, superimposed on the Earth's magnetic field, can disrupt this ability. Here, by means of spin dynamics simulations, we show that it may be possible for the birds to orient in a monochromatic radiofrequency field in the absence of the Earth's magnetic field. If such a behavioural test were successful, it would provide powerful additional evidence for a radical pair mechanism of avian magnetoreception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.