Abstract

ABSTRACTNanocomposites of PMR-15 polyimide and a diamine modified silicate were prepared by addition of the silicate to the PMR-15 resin. The orientation of the ion exchange diamine within the silicate gallery was determined by x-ray diffraction and found to depend on the clay cation exchange capacity. The oligomer melt viscosity exhibited a dependence on the orientation of the diamine in the silicate interlayer, and in some cases, on the length of the diamine. A correlation was observed between the oligomer melt viscosity and the crosslinking enthalpy, where nanocomposites with an increased melt viscosity exhibited a decrease in enthalpy on crosslinking. After crosslinking, those nanocomposites with a high melt viscosity had poorer thermal oxidative stability compared to the less viscous systems. The melt viscosity was tailored by co-exchange of an aromatic diamine and an aliphatic amine into the silicate. Nanocomposites prepared with this silicate exhibited an increase in thermal oxidative stability compared to the neat resin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call