Abstract

Different facets in perovskite crystals exhibit distinct atomic arrangements, influencing their electronic, physical, and chemical properties. Perovskite films incorporating tin oxide (SnO2) as the electron transport layer face challenges in facet regulation. This study reveals that tea saponin (TS), a natural compound serves as a SnO2 modifier, facilitates optimal growth of perovskite crystals on the (111) facet. The modification promotes preferential crystal orientation through hydrogen bond and Lewis coordination. TS forms a chelate with SnO2, resulting in a smoother film and n-type doping, leading to improved carrier extraction and reduced defects. The TS-modified perovskite solar cells achieve a champion efficiency of 24.2%, leveraging from an obvious enhancement of open-circuit voltage (Voc) of 1.18V and fill factor (FF) of 82.8%. The devices also demonstrate enhanced humidity tolerance and storage stability, ensuring improved stability without encapsulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call