Abstract

The origin of the γ fiber recrystallization texture in interstitial-free (IF) steel developed during continuous annealing has been investigated by scanning electron microscopy (SEM) and orientation imaging microscopy (OIM). Nucleation of {111} «uvw» oriented crystals occurs in deformation banded γ grains and therefore a comprehensive study of microstructure of cold-rolled IF steel in the sections perpendicular to the rolling and transverse directions (TDs) and the rolling plane (RP) has been carried out to understand the formation, geometry, and microstructural features of recrystallization. The RP section gave abundant evidence of orientation gradients formed in γ oriented grains that had been subject to orientation splitting to give deformation bands. These orientation gradients across a single grain are around 5 to 30 deg and this orientation difference is sufficient to form nuclei with mobile interfaces during annealing and hence to create chains of γ oriented new grains in the original hot band γ grain envelopes. A grain impingement model requiring orientation pinning is then proposed to explain how these grains, contained in deformed γ grain envelopes, grow out into their neighbors to dominate the final recrystallization texture of IF steel. The α deformed grains contain only small lattice curvatures, and therefore in-grain nucleation is rare. These grains are mostly consumed by invading γ grains toward the end of the recrystallization process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.