Abstract

The cross-slip and pinning of a 1/2a〈111〉 screw dislocation in b.c.c. metals in the vicinity of an interstitial impurity atom are studied in dependence on crystal orientation. To this purpose, the interaction energy between the dislocation and an interstitial atom is calculated in an anisotropic elastic continuum and it is assumed that the screw dislocation moves microscopically on {112} or {110} planes between its stable configuration positions in b.c.c. lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.