Abstract

Differences in structures and flexibilities of DNA duplexes play important roles on recognition by DNA-binding proteins. We herein describe a novel method for structural analyses of DNA duplexes by using orientation dependence of Förster resonance energy transfer (FRET). We first analyzed canonical B-form duplex and correct structural parameters were obtained. The experimental FRET efficiencies were in excellent agreement with values theoretically calculated by using determined parameters. We then investigated DNA duplexes with nick and gaps, which are key intermediates in DNA repair systems. Effects of gap size on structures and flexibilities were successfully revealed. Since our method is facile and sensitive, it could be widely used to analyze DNA structures containing damages and non-natural molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.