Abstract

Organic–inorganic hybrid lead halide perovskites have shown significant progress in the last few years having achieved efficiencies over 25% at the lab scale. The sequential deposition technique has provided a robust approach in the perovskite film fabrication. However, obtaining a reproducible and quality perovskite film has always been challenging because of the highly crystalline and ordered (001) oriented underlying PbI2 film. Here, we report a simple solution approach to fabricate a PbI2 residue-free, superior grade perovskite film by using a compositional engineered PbI2–precursor solution. We demonstrate that the Pb–precursor film crystallized into a R-centered Hexagonal metric lattice with (h0l), (hk0), and (00l) orientations provides a more efficient and quicker conversion into perovskites compared to conventional (001) oriented 2H-PbI2. A porous and multi-oriented PbI2 film is prepared by rationally incorporating a volumetric fraction of Pb(Ac)2·3H2O in the typical PbI2/dimethylformamide precursor solution, which significantly improves the surface features of PbI2 as well as the structural properties. As a result, a compact, smooth, and large grain perovskite can be obtained by accomplishing a full conversion with comparatively much less reaction time. Furthermore, a comprehensive mechanism of structural modification of PbI2 and the role of its orientation in ameliorating the reaction kinetics has been demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call