Abstract

The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface. The interenzyme relative orientation was found to determine the intermediate delivery route and affect overall chain reaction efficiency. Moreover, interfacial DET between the fusion GDHγα and the electrode was altered by the binding conformation of the coimmobilized enzyme and fusion INVs. Collectively, this work emphasizes the importance of interenzyme orientation when incorporating enzymatic cascade in an electrocatalytic system and demonstrates the efficacy of SBP fusion technology as a generic tool for developing cascade-induced direct bioelectrocatalytic systems. The proposed approach is applicable to enzyme cascade-based bioelectronics such as biofuel cells, biosensors, and bioeletrosynthetic systems utilizing or producing complex biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.