Abstract

Orientation control of thin film nanostructures derived from block copolymers (BCPs) are of great interest for various emerging technologies like separation membranes, nanopatterning, and energy storage. While many BCP compositions have been developed for these applications, perpendicular orientation of these BCP domains is still very challenging to achieve. Herein we report on a new, integration-friendly approach in which small amounts of a phase-preferential, surface active polymer (SAP) was used as an additive to a polycarbonate-containing BCP formulation to obtain perpendicularly oriented domains with 19 nm natural periodicity upon thermal annealing. In this work, the vertically oriented BCP domains were used to demonstrate next generation patterning applications for advanced semiconductor nodes. Furthermore, these domains were used to demonstrate pattern transfer into a hardmask layer via commonly used etch techniques and graphoepitaxy-based directed self-assembly using existing lithographic integration schemes. We believe that this novel formulation-based approach can easily be extended to other applications beyond nanopatterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.