Abstract
The full matrix of electro-elastic constants of sillenite-type crystals Bi12TiO20 (BTO) and Bi12SiO20 (BSO) were determined by the resonance method, with d14 and k14 being on the order of 40–48 pC/N and 31%–36%, respectively. In addition, double-rotated orientation dependence of d33 was investigated, with the maximum values of 25–28 pC/N being achieved in ZXtl45°/54°-cut samples. The electrical resistivity of BSO was found to be two orders higher than that of BTO, being on the order of 7 × 105 Ω cm at 500 °C. The temperature dependence of dielectric and piezoelectric properties were investigated. BSO exhibited a high thermal stability in the temperature range of 25–500 °C, while BTO showed a variation of ~3% in the range of 25–350 °C. The high values of d14 and k14, together with the good thermal stability, make BTO and BSO crystals potential candidates for electromechanical applications in medium temperature range.
Highlights
Sillenite-type Bi12MO20 crystals have non-centrosymmetric, body-centered cubic structure belonging to the I23 space group [1,2]
The temperature dependence of electrical resistivity, dielectric, elastic, electromechanical coupling and piezoelectric constants were investigated in the range of 25–500 °C
The dielectric, elastic and piezoelectric constants of the BTO and BSO single crystals were measured by resonance method, as listed in Table 1, and compared to the reported values measured by the ultrasonic method [8,13]
Summary
Sillenite-type Bi12MO20 (where M = Ti, Si and Ge, known as BTO, BSO and BGO) crystals have non-centrosymmetric, body-centered cubic structure belonging to the I23 space group [1,2]. Extensive research has been carried out on the optical and room temperature piezoelectric properties of sillenite-type crystals [8,13,14,15]. The full matrix of electro-elastic constants of Bi12TiO20 (BTO) and Nd0.06Bi11.94SiO20 (abbreviated as Nd: BSO or BSO) crystals were determined using resonance method based on IEEE Standards on Piezoelectricity. The temperature dependence of electrical resistivity, dielectric, elastic, electromechanical coupling and piezoelectric constants were investigated in the range of 25–500 °C
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.