Abstract

Strain-induced crystallization of natural rubber samples with various network-chain densities, ν, was investigated by synchrotron X-ray diffraction measurements. It was found that the onset strain of crystallization was almost independent of ν. Lateral crystallite size and degree of orientational fluctuations of crystallites were also evaluated. These results indicated that stretched molecular chains acted as nuclei while surrounding chains could also contribute to the crystal growth. Deformation of crystal lattice with nominal stress was detected, and the strain-induced crystallites were found to be responsible for the increased modulus upon elongation. The unit cell volume decreased almost linearly with nominal stress. By assuming the deformation mechanism of the rubber network as a pantograph, the reinforcement effect of the crystallites is thought to be brought out not directly by crystallites connected in series but indirectly through the surrounding network chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.