Abstract

AbstractIn the cast film process a polymer melt is extruded through a slit die, stretched in air, and cooled on a chill roll. During the path in air the melt cools while being stretched. Film casting experiments were carried out with an isotactic polypropylene resin. The temperature and width distributions were measured along the draw direction. Further, the crystallinity and Hermans orientation factor were measured on the final film. The process was described by a simple thermomechanical model derived elsewhere. The evolution of the molecular orientation parameters was calculated on the basis of a dumbbell model coupled with velocity and temperature distributions provided by the thermomechanical model. The experimental crystalline orientations of the final films collapsed into a single step‐shaped curve (from low to high orientation) if plotted versus the stress calculated by the model at the frozen line. The experimental values of the crystallinity and Hermans orientation factors are discussed on the basis of predictions of the dumbbell model for melt orientation at the frozen line and the crystallinity data obtained in quiescent conditions under the same cooling rate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1981–1992, 2002; DOI 10.1002/app.10422

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.