Abstract

The characteristics of lattice structures can make crystal possess distinct anisotropic features, such as the varying magnetism in different crystal orientations and different directions. The anisotropic magnetism can also cause the free energy to vary in different orientations of crystal in a magnetic field (magnetic anisotropy energy). Magneto-anisotropy can make the crystal rotate by the magnetic force moment on the crystal with the easy axis towards the direction of the magnetic field, and can also promote the preferential growth along a certain crystal direction at the lowest energy state. By solidification, vapor-deposition, heat treatment, slip casting and electrodeposition under magnetic field, the crystal structure with high grain orientation is obtained in a variety of binary eutectics, peritectic alloys, multicomponent alloys and high temperature superconducting materials. This makes it possible to fabricate texture-functional material by using high magnetic field and magneto-crystalline anisotropy of crystal. The purpose of this article is to review some recent progress of the orientation and alignment in material processing under a high magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.