Abstract

An approach to the quantum description of the orientation of relativistic particles, generalizing the approach to nonrelativistic objects possessing orientation (in particular, a rotator) is proposed, based on the self-consistent use of two reference frames. The realization of such an approach is connected with the introduction of wave functions f (x, z) on the Poincare group M(3,1), which depend on the coordinates x μ of the Minkowski space M(3,1)/Spin(3,1) and orientational variables assigned by the elements z β α of the matrix Z ∈Spin(3,1).The field f (x, z) is the generating function for ordinary spin-tensor fields and admits a number of symmetries. Besides the Lorentz transformations (corresponding to the action of the Poincare group from the left and interpretable as external symmetries), transformations of a reference frame associated with an orientable object (corresponding to the action of the Poincare group from the right and interpretable as internal symmetries) are applicable to orientable objects. In addition to the six quantum numbers assigned by the Casimir operators and the left generators, quantum numbers arise here that are assigned by the right generators and are associated with internal symmetries. The assumption that the internal symmetries of the theory of orientable objects are local leads to gauge theories describing the electroweak and gravitational interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.