Abstract

Although many attempts have been made to improve the efficacy of radiotherapy to treat cancer, radiation resistance is still an obstacle in lung cancer treatment. Oridonin is a natural compound with promising antitumor efficacy that can trigger cancer cell death; however, its direct cellular targets, efficacy as a radiosensitizer, and underlying mechanisms of activity remain unclear. Herein, we report that oridonin exhibits additive cytotoxic and antitumor activity with radiation using the H460 non-small cell lung cancer cell lines. We assessed the effect of oridonin by proliferation, clonogenic, reactive oxygen species (ROS) production, DNA damage, and apoptosis assays. In vitro, oridonin enhanced the radiation-induced inhibition of cell growth and clonogenic survival. Oridonin also facilitated radiation-induced ROS production and DNA damage and enhanced apoptotic cell death. In vivo, the combination of oridonin and radiation effectively inhibited H460 xenograft tumor growth, with higher caspase-3 activation and H2A histone family member X (H2AX) phosphorylation compared with that of radiation alone. Our findings suggest that oridonin possesses a novel mechanism to enhance radiation therapeutic responses by increasing DNA damage and apoptosis. In conclusion, oridonin may be a novel small molecule to improve radiotherapy in non-small cell lung cancer.

Highlights

  • Lung cancer is a leading cause of cancer-related deaths worldwide

  • We found that oridonin could sensitize H460 non-small cell lung cancer (NSCLC) cells to radiation-induced cell death, most likely by increasing production of reactive oxygen species (ROS), DNA damage, and apoptosis

  • There is an increasing interest in combining radiation and natural compounds to enhance the efficacy of radiotherapy

Read more

Summary

Introduction

Radiotherapy is an important treatment for unresectable advanced human lung cancers, as well as an adjuvant therapy after surgery and in palliative treatment. It is used at every stage of clinical progression, with both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) forms of the disease [1]. Lung cancer radiotherapy is far from ideal due to problems associated with radiation resistance of the cancerous cells and severe cytotoxicity against noncancerous cells [4]. Despite recent advances in the delivery of lung cancer radiotherapy, most patients relapse and show poor survival [5,6]. It is necessary to develop new strategies to improve the efficacy of this treatment procedure

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call