Abstract

The distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the muscle, liver, spleen and kidney tissue of two fish species was studied using an optimised diatomaceous earth assisted modified QuEChERS extraction method. Five-year-old free-ranging male African sharptooth catfish (Clarias gariepinus) and 5-year-old male common carp (Cyprinus carpio) sampled from the Hartbeespoort Dam in South Africa were used for method development. Acetonitrile extraction produced more precise recoveries than hexane extraction. Fluorene and naphthalene were the most abundant PAHs detected in the majority of fish tissues analysed. PAH bioaccumulation in 5-year-old carp and 5-year-old catfish was in the order muscle > kidney > liver > spleen and liver > muscle > kidney > spleen, respectively. PCBs were mostly detected in carp spleen and kidney. Two-year-old carp were analysed to determine PCB and PAH bioaccumulation trends. The differences in ∑16PAH concentrations between the four organs tested were all statistically insignificant for the 3 fish tested (p > 0.05). All other organs with the exception of 5-year-old carp spleen and 5-year-old carp kidney recorded total 31 PCB concentrations (∑31PCB) < 25ngg-1. Only 5-year-old carp spleen (∑31PCB of 592ngg-1) and 5-year-old carp kidney (∑31PCB of 561ngg-1) had significant differences (p < 0.05) from the spleen and kidney in 5-year-old catfish and 2-year-old carp. Whilst the carp and catfish sampled can be considered low PCB risk foods, 5-year-old carp muscle can be considered to be a high PAH risk food, with a benzo(a)pyrene concentration of 7μgg-1, based on the EU Commission Regulation 2005/208/EC pertaining to the maximum permissible benzo(a)pyrene level in fresh fish muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call