Abstract
Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, intense research efforts on an unprecedented scale have focused on the study of viral entry mechanisms and adaptive immunity. While the identification of angiotensin-converting enzyme 2 (ACE2) and other co-receptors has elucidated the molecular and structural basis for viral entry, the pathobiological mechanisms of SARS-CoV-2 in human tissues are less understood. Recent advances in bioengineering have opened opportunities for the use of organotypic human tissue models to investigate host–virus interactions and test antiviral drug candidates in a physiological context. Although it is too early to accurately quantify the added value of these systems compared with conventional cell systems, it can be assumed that these advanced three-dimensional (3D) models contribute toward improved result translation. This mini-review summarizes recent work to study SARS-CoV-2 infection in human 3D tissue models with an emphasis on the pharmacological tools that have been developed to understand and prevent viral entry and replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.