Abstract

Organotins, important environmental pollutants widely used in agricultural and industrial applications, accumulate in the food chain and induce imposex in several marine species as well as neurotoxic and immunotoxic effects in higher animals. Reduced birth weight and thymus involution, observed upon exposure to organotins, can also be caused by excessive glucocorticoid levels. We now demonstrate that organotins efficiently inhibit 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), converting active 11β-hydroxyglucocorticoids into inactive 11-ketoglucocorticoids, but not 11β-HSD1, which catalyzes the reverse reaction. Di- and tributyltin as well as di- and triphenyltin inhibited recombinant and endogenous 11β-HSD2 in lysates and intact cells with IC50 values between 500 nM and 3 μM. Dithiothreitol protected 11β-HSD2 from organotin-dependent inhibition, indicating that organotins act by binding to one or more cysteines. Mutational analysis and 3-D structural modeling revealed several important interactions of cysteines in 11β-HSD2. Cys90, Cys228, and Cys264 were essential for enzymatic stability and catalytic activity, suggesting that disruption of such interactions by organotins leads to inhibition of 11β-HSD2. Enhanced glucocorticoid concentrations due to disruption of 11β-HSD2 function may contribute to the observed organotin-dependent toxicity in some glucocorticoid-sensitive tissues such as thymus and placenta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.