Abstract

In this study, we present the synthesis of benzimidazo[1,2-a] quinoline-based heterocycles bearing organosulfur and organoselenium moieties through transition-metal-free cascade reactions involving a sequential intermolecular aromatic nucleophilic substitution (SNAr). Both sulfur and selenium derivatives presented absorption maxima located around 355nm related to spin and symmetry allowing electronic 1π-π* transitions, and fluorescence emission at the violet-blue region (~440nm) with relatively large Stokes shift. The fluorescence quantum yields were slightly influenced by the chalcogen, with the sulfur derivatives presenting higher values than the selenium analogs. In this sense, the quantum yields for selenium derivatives can probably be affected by the intersystem crossing or even the photoinduced electron transfer process (PET). The compounds were successfully applied in all-solution-processed organic light-emitting diodes (OLEDs), where poly(9-vinylcarbazole) was employed as a dispersive matrix generating single-layer device cells. The obtained electroluminescence spectra are a sum of benzimidazo[1,2-a]quinolines and PVK singlet and/or triplet emissive states, according to their respective energy band gaps. The best diode rendered a luminance of 25.4cd⋅m-2 with CIE (0.17, 0.14) and current efficiency of 20.2 mcd⋅A-1, a fivefold improvement in comparison to the PVK device that was explained by a 50-fold increase of charge-carriers electrical mobility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.