Abstract

A novel blend of organosoluble phthaloyl starch (PhSt) and hydroxyethyl cellulose (HEC) was used as the polymer host to fabricate polymer gel electrolytes. Rheological analyses, such as amplitude sweep studies and tack tests, indicate that gels with good rigidity, strength and adhesiveness were attained upon inclusion of 20 wt% of HEC onwards. However, beyond 60 wt% of HEC, the mechanical properties and ionic conductivity of the gels were considerably compromised. Gels comprising 20–60 wt% of HEC were then fabricated into quasi-solid dye-sensitised solar cells (QSDSSC) with the addition of tetrapropylammonium iodide/iodine. The highest efficiency of 3.02% was recorded with gels comprising 70 wt% of PhSt and 30 wt% of HEC, which to the best of our knowledge is the highest ever efficiency in literature for starch-based electrolytes. Electrochemical impedance spectroscopy (EIS) of the QSDSSC revealed that the adhesive property of the gels plays a crucial role in charge transfer processes at the electrode/electrolyte interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.