Abstract

We report electrical transport measurements made on alkylphosphonate self-assembled monolayers grown on nanometer-thin SiO2 on top of highly p-doped silicon. At small bias direct tunneling is characterized by a decay constant of β ≈ 0.7/carbon. At larger positive bias to the silicon (1.1–1.5 V) the current-voltage traces feature a prominent shoulder, reminiscent of a negative differential resistance. We attribute this feature to a significant reduction in trap-assisted tunneling, as supported by a simulation. Hence, organophosphonate monolayers are excellent model systems to study electrical transport through ordered structures; they also provide highly efficient electrical passivation of the SiO2/Si surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.