Abstract
The water contaminations with organophosphate triesters (tri-OPEs) and diesters (di-OPEs) have recently provoked concern. However, the distributions of these compounds in natural water sources and artificial water treatment facilities are poorly characterized. A comprehensive study was therefore performed to measure their concentrations in a water source, a long-distance water pipeline, and a drinking water treatment plant (DWTP). Eight tri-OPEs and 3 di-OPEs were found to be widely distributed, with total concentrations in source water and pipelines ranging from 290.6 to 843.9ng/L. The most abundant pollutants were tris(1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate, tri-n-butyl phosphate (TnBP), and diphenyl phosphate (DPhP). Di-OPEs appeared to be removed less efficiently in the DWTP than the parent tri-OPEs, and the elimination efficiencies of tri-OPEs were structure-dependent. Long-distance pipeline transportation had no significant effect on the distributions of tri- and di-OPEs. Statistical analysis suggested that the sources of di-OPEs and the corresponding tri-OPEs differed, as did those of DPhP and di-n-butyl phosphate. A risk analysis indicated that tri-OPEs present limited ecological risks that are mainly due to TnBP and TCPP, and that the human health risks of tri-OPEs are negligible. However, di-OPEs (especially DPhP) may increase these risks. Further studies on the risks posed by di-OPEs in aquatic environments are therefore needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.