Abstract

The organophosphate flame retardants (OPFRs) have emerged as alternatives to banned brominated flame retardants but little is known about their possible activity as endocrine disruptors. Our goal was to compare the effects of 7 commonly used OPFRsin vitroon MA-10 mouse Leydig tumor cells to those of a major brominated flame retardant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). The effects of OPFRs and BDE-47 on mitochondrial activity, cell counts, oxidative stress, steroid secretion and gene expression were investigated. BDE-47 and all 7 OPFRs tested significantly reduced MA-10 cell mitochondrial activity (concentrations ≥50 μM) and cell number (concentrations ≥10 μM). All of the OPFRs significantly increased (10 μM, 1.7-4.4-fold) superoxide production whereas BDE-47 had no significant effect. Basal progesterone production was significantly increased (10 μM, 1.5 to 3-fold) by 2-ethylhexyl diphenyl phosphate, isodecyl diphenyl phosphate, isopropylated triphenyl phosphate, tert-butylphenyl diphenyl phosphate, and tricresyl phosphate, while BDE-47, triphenyl phosphate and tri-o-cresyl phosphate had no effect. Interestingly, isopropylated triphenyl phosphate enhanced dbcAMP-stimulated steroid production (∼2-fold), while tri-o-cresyl phosphate decreased (∼2/3) LH-stimulated steroid production. Several OPFRs affected the expression of genes involved in the biosynthesis of progesterone. In conclusion, all the OPFRs tested affected mitochondrial activity, cell survival, and superoxide production. Basal or stimulated steroid secretion was affected by all of the OPFRs except triphenyl phosphate; BDE-47 had no effect. Hence, the OPFRs currently used as alternatives affect Leydig cells to a greater extent than the brominated flame retardants that they have replaced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call