Abstract

Development of the organomorphic ceramic-matrix composites (CMCs), where the reinforcing preform is built using polymer fibers subject essentially to hot pressing, was motivated by a desire to obtain much higher structural uniformity as well as to reduce the number of the process steps involved in the production of CMCs. This paper addresses the peculiarities of the organomorphic silicon carbide preform formation process. Using X-ray phase analysis, tomography, mass and IR spectroscopy, and thermomechanical and X-ray microanalysis, both the properties of the initial fibers of polycarbosilane (PCS)—the silicon carbide fiber precursor—and their transformation in the preform while heated to 1250 °C under constant pressing at 10–100 kPa were studied. Analysis of the data obtained showed the organomorphic SiC preform relative density at a level of 0.3–0.4 to be ensured by self-bonding of the silicon carbide preform, resulting from the fact that during the low-temperature part of pyrolysis, easily polymerizing substances are released leaving a high coke residue, thus cementing the preform. Another possible factor of SiC framework self-bonding is the destruction of the polymer fibers during pyrolysis of various PCS preforms differing in their methylsilane composition (for example, dimethylsilane), where deposition of silicon carbide on the contacting fibers starts as early as at 450–500 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call