Abstract

Several new triorganotin(IV) derivatives of L-homocysteic acid (L-HCAH) with formula R3Sn(L-HCA) (R=Me, nBu, Ph) have been synthesized. Their solid-state configurations were determined by IR and Mössbauer spectroscopy. The tin(IV) atom is five-coordinated in all the complexes, with the L-homocysteic acid behaving as a monoanionic bidentate ligand coordinating the tin(IV) atom through a chelating or bridging carboxylate group. The sulfonate (SO3−) and NH3+ groups of L-homocysteic acid maintain their free acid configuration and hence do not participate to the coordination of the tin(IV) atom. Coordination hypotheses have been checked through the correlation between the Mössbauer parameter isomer shift, δ, and partial atomic charge on the tin atoms, QSn, performed, for all the new organotin(IV) compounds, on the basis of an equalization procedure applied to idealized trigonal-bipyramidal structures for R3Sn(L-HCA). 1H and 13C NMR spectra of the complexes show that pentacoordination of the tin atom, with R groups in the equatorial plane of a trigonal bipyramid, is retained in DMSO solution. The NMR data confirm also that the uncoordinated NH3+ group of the ligand is still present in solution. Results gathered after exposure of two- to four-cell embryos of the sea urchin Paracentrotus lividus (Echinodermata) to the triorganotin(IV) L-homocysteate derivatives as well as to the parent triorganotin(IV) chlorides document cytotoxicity of the complexes, while free L-homocysteic acid exerts no significant toxic activity. The trimethyltin(IV) L-homocysteate derivative seems to exert a lower cytotoxicity than the tributyl- and triphenyl-tin(IV) ones. Different structural lesions have been identified by comparative analysis of mitotic chromosomes from untreated embryos (negative controls) and embryos treated with triorganotin(IV) L-homocysteate derivatives, such as (1) suppression of the stretch among sister chromatids at the beginning of anaphase stage; (2) deeply stained zones mainly located at the telomeric regions of chromosomes; (3) arm breakages; and (4) chromosome bridges among daughter chromosomes at anaphase stage. A colchicine-like effect of triorganotin(IV) L-homocysteate derivatives was observed. © 1997 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call