Abstract

AbstractHydrogels with pure hydrophilic network have received much attention due to their excellent low frictional behavior. However, the lubrication performance of hydrogels is not satisfied under high‐speed condition due to the energy dissipation caused by adsorbed polymer chains as well as the failure of lubricating mechanisms accompanied by the transition of lubrication regime. In this work, interpenetrating double‐network organohydrogels were constructed by combining hydrophilic and oleophilic polymer networks to modify the physiochemical properties of surface polymer chains, especially the chain mobility. The oleophilic polymer network spatially restricting the mobility of the swollen hydrophilic network in water, resulted in a low coefficient of friction (ca. 0.01) compared with conventional hydrogels at high speed (0.1 m s−1). Meanwhile, the organohydrogels had superior wear resistance, with almost no wear observed on the sliding track after 5 k cycles of rubbing at high speed. The design concept of organohydrogels can be extended to a variety of low‐wear, highly‐lubricating materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.