Abstract

The study of 1-R-substituted organogermatranes (R = aryl, substituted benzyl, heteroaryl, styryl, aryl ethynyl and OSiR3) by cyclic voltammetry and real-time EPR-spectroelectrochemistry supported by DFT B3LYP/LANL2DZ calculations showed that electron withdrawal from these compounds is electrochemically reversible and leads to cation radicals of different stability. For germatranes with HOMO mainly localized on the atrane cage N atom (3c-4e bonding), EPR spectroscopy and Fermi contact coupling from DFT B3LYP/LANL2DZ calculations revealed the absence of spin delocalization on Ge atom in the cation radicals. Initially in an endo-configuration in neural germatranes, N atom becomes planar in the corresponding cation radicals. When perturbed by ortho-halo substituents (o-X–C6H4; X = F, Br), Ge tends to hexa-coordinated geometry; for the cation radicals of other germatranes, flattening towards trigonal bipyramid is preferred. In these species, two types of transmission of electronic effects are realized (atrane-localization of spin upon aryl substitution and “spin-leakage” upon benzyl-like substitution) that makes these compounds promising for developing long-range conjugated systems for molecular electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.