Abstract

Fatty Liver Shionogi (FLS) mice have been shown to develop a hereditary disorder characterized by localized retinochoroidal defects of the ventral fundus very similar to human typical ocular coloboma without microphthalmia. The objective of this study was to determine when and how the failure of the optic fissure closure occurs, and to clarify the disturbed mechanism of basement membrane disintegration during embryonal stage in FLS mice. Fetuses at day 11.5–15.5 of gestation were obtained from dams of FLS and BALB/c strain of mice. Coronal serial sections through the eye were examined by light and electron microscopy. The sections were followed by observation of the basement membrane using reaction with periodic acid-Schiff (PAS) reagent and immunohistochemical staining with anti-Laminin and anti-Type IV collagen antibodies. Both optic fissure margins closely approached each other up to GD 11.5 in all FLS and BALB/c embryos. The inner and outer layers of the optic cup did not normally fuse at midlenticular levels of the optic fissure in almost 70% of FLS fetuses by GD 15.5, whereas both margins were completely fused in all BALB/c fetuses of the same gestational day. In the FLS fetuses at GD 12.5, rolling on one side of fissure margins and consequent asymmetry were observed at the ventral optic fissure. The basement membrane persisted after the close contact of both sides of the fissure margins during GD 11.5 and 15.5. Ultrastructurally, the basal lamina was not disintegrated and mesenchymal cells intervened between the two neuroepithelial layers, resulting in complete separation of both fissure margins at GD 13.0. It is highly probable that the disturbed basement membrane disintegration right before optic fissure closure causes mild ocular coloboma without microphthalmia in FLS mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call