Abstract

A new catalytic system for the anaerobic oxidation of benzyl alcohols using a tetrazole-amino-saccharin organocatalyst has been established. In a solvent-free and microwave assisted process comprising aqueous tert-butyl hydroperoxide (TBHP) as oxidant, a variety of benzyl alcohols has been efficiently converted to aldehydes under mild conditions. Most reactions are complete within 30min and the catalyst exhibits varied functional group compatibility. A catalytic cycle for the oxidation of the alcohols promoted by the tetrazole-amino-saccharin derivative is outlined involving radical species. DFT calculations performed for the oxidation of benzyl alcohol with and without organocatalyst show that the rate limiting step of the whole reaction is the cleavage of the OO bond in TBHP with the subsequent hydrogen abstraction from the alcohol. The tetrazole-amino-saccharin organocatalyst assists the H-abstraction from benzyl alcohol by the bound HO radical. The simplicity, selectivity and softness of reaction conditions of the studied organocatalytic protocol suggest a great potential for extensive use in synthetic chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.