Abstract

Achieving complete chemoselectivity in the polymerization of multivinyl polar monomers is an important yet challenging task, currently achievable only by metal- or metalloid-mediated polymerization processes but in a noncatalytic fashion. Now this work shows that organic N-heterocyclic carbene (NHC) catalysts effect rapid, chemoselective, and catalytic polymerization of multivinyl-functionalized γ-butyrolactones, particularly γ-vinyl-α-methylene-γ-butyrolactone (VMBL). Thus, the NHC-catalyzed polymerization of VMBL not only is quantitatively chemoselective, proceeding exclusively via polyaddition across the conjugated α-methylene double bond while leaving the γ-vinyl double bond intact, but also requires only an exceptionally low catalyst loading of 50 ppm, thus, exhibiting a remarkably high catalyst turnover frequency of 80000 h-1 and producing on average 33.6 polymer chains of Mn = 73.8 kg/mol per NHC molecule. The resulting PVMBL can be either thermally cured into cross-linked materials or postfunctionalized with the thiol-ene "click" reaction to achieve complete conversion of the pendant vinyl group on every repeat unit into the corresponding thioether.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.