Abstract

Organocatalytic acetylation of pea starch was systematically optimized using tartaric acid as catalyst. The effect of the degree of substitution with alkanoyl (DSacyl) and tartaryl groups (DStar) on thermal and moisture resistivity, and film-forming properties was investigated. Pea starch with DSacyl from 0.03 to 2.8 was successfully developed at more efficient reaction rates than acetylated maize starch. Nevertheless, longer reaction time resulted in granule surface roughness, loss of birefringence, hydrolytic degradation, and a DStar up to 0.5. Solid-state 13C NMR and SEC-MALS-RI suggested that tartaryl groups formed crosslinked di-starch tartrate. Acetylation increased the hydrophobicity, degradation temperature (by ~17 %), and glass transition temperature (by up to ~38 %) of pea starch. The use of organocatalytically-acetylated pea starch with DSacyl ≤ 0.39 generated starch-based biofilms with higher tensile and water barrier properties. Nevertheless, at higher DS, the incompatibility between highly acetylated and native pea starches resulted in a heterogenous/microporous structure that worsened film properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.