Abstract

Abstract Small organic molecules predominantly containing C, H, O, N, S and P element are found promising molecule to accelerate chemical reactions and are named organocatalysis. In addition, these organocatalysts are easy availability, stable in water and air, inexpensive, and low toxicity, which confer a huge direct application in organic synthesis when compared to transition metal catalyzed reactions and becoming powerful tools in the construction of a selective chiral product. Interest on organocatalysis is spectacularly increased since last two decades, due to the novelty of the concept and selectivity. Based on the nature of the organocatalysts used, they are classified in to four major classes, among them one of the types is amino acids derived organocatalysts. Natural amino acids are playing important role in building blocks of protein construction, and also intermediate products of the metabolism. α-Amino acid is a molecule, that contains both amine and carboxyl functional group. Their particular structural characteristic determines their role in protein synthesis, and bifunctional asymmetric catalysts for stereoselective synthesis. Two functional groups present on a single carbon acting as an acid and base, which promote chemical transformations in concert similar to the enzymatic catalysis. The post translational derivatives of natural α-amino acids include 4-hydroxy-L-proline and 4-amino-L-proline scaffolds, and its synthetic variants based organocatalysts, whose catalytic activity is well documented. This chapter discussed past and present development of the organocatalysts derived from natural and modified amino acids for various important organic transformations reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call