Abstract

The electrophilic aromatic substitution of a C-H bond of benzene is one of the archetypal transformations of organic chemistry. In contrast, the electron-rich π-system of benzene is highly resistant to reactions with electron-rich and negatively charged organic nucleophiles. Here, we report that this previously insurmountable electronic repulsion may be overcome through the use of sufficiently potent organocalcium nucleophiles. Calcium n-alkyl derivatives-synthesized by reaction of ethene, but-1-ene, and hex-1-ene with a dimeric calcium hydride-react with protio and deutero benzene at 60°C through nucleophilic substitution of an aromatic C-D/H bond. These reactions produce the n-alkyl benzenes with regeneration of the calcium hydride. Density functional theory calculations implicate an unstabilized Meisenheimer complex in the C-H activation transition state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.