Abstract

Organoamine–inorganic hybrid adsorbent materials were synthesized by covalent immobilization of alkylaminotrimethoxysilanes and polyethyleneiminetrimethoxysilane onto fumed silica (nanosilica). The obtained silica–organic hybrid materials were characterized by thermogravimetry and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) confirming the successful grafting of the amine derivatives to silica and their surface area measured using Brunauer–Emmett–Teller method (BET). The influence of reaction conditions on the graft density of organoamines was investigated and it was found that the saturation of the silane coupling agents with carbon dioxide prior to surface modification resulted in higher graft densities. Carbon dioxide uptake of the obtained hybrid materials were determined by thermogravimetric analysis at room temperature as well as higher temperatures resulting in CO2 adsorption capacities from 32.4 to 69.7mgg−1 adsorbent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.