Abstract

The synthesis of quaternized silica nanoparticles and its application to fine clay flocculation were investigated. N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was used as a cationic reagent to introduce quaternary amine groups onto the surfaces of silica nanoparticles via the formation of covalent bonds between the methoxy groups of the cationic reagents and the silanol groups in the silica surface. The zeta potential, ζ, and charge density of the silica particles modified under various reaction conditions were determined. Dynamic clay flocculation experiments using a photometric dispersion analyzer (PDA) showed that the cationic silica alone contributed little to the flocculation. However, the cationic silica, in conjunction with an anionic polymer of high M w and low charge density, led to a significant improvement in the flocculation of fine clay particles. The mechanism of flocculation was explored by a systematic investigation of interaction between cationic silica and anionic polymers as well as of their adsorption behavior on clay surfaces. The influence of factors such as pH and electrolyte concentration on clay flocculation was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.