Abstract

Neurons in the deepest layer of mammalian cerebral cortex are morphologically and physiological diverse and are situated in a strategic position to modulate neuronal activity locally and in other structures. The variety of neuronal circuits within which layer 6 neurons participate differs across species and cortical regions. However even amidst this diversity, common organizational features emerge. Examination of the anatomical and physiological characteristics of different classes of layer 6 neuron, each specialized to participate in distinct circuits, provides insight into the functional contributions of layer 6 neurons toward cortical information processing.

Highlights

  • One of the most obvious distinguishing features of mammalian cerebral cortex is its laminar structure

  • Layer 6 contains the richest diversity of morphological cell types

  • Based on anatomical observations of short and tall pyramidal neurons in primary visual cortex (V1) of cat and primate, these cells are hypothesized to participate in reciprocal circuits with layer 4 and layer 5, respectively (Figure 1; see for review, Callaway, 2004; Douglas and Martin, 2004)

Read more

Summary

Introduction

One of the most obvious distinguishing features of mammalian cerebral cortex is its laminar structure. In primate primary visual cortex, for example, there are at least 8 different types of pyramidal neuron (5 cell types display short pyramidal morphology and 3 cell types display tall pyramidal morphology), each defined by local dendritic and axonal arborization patterns targeting specific sub-lamina (Wiser and Callaway, 1996; Briggs and Callaway, 2001).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.