Abstract

Effective combination of the photosensitivity and photothermal propertyin photocatalyst is vital to achievethe maximum light utilization for superior photocatalytic efficiency. Herein, this work successfully organizes photosensitive Cd-NS single-sites and photothermal Ni-NS single-sites uniformly at a molecular level within a tailored trimetallic metal-organic framework. The optimized Ho6-Cd0.76Ni0.24-NS exhibits a superior photocatalytic hydrogen evolution rate of 40.06 mmol g-1 h-1 under visible-light irradiation and an apparent quantum efficiency of 29.37% at 420nm without using cocatalysts or photosensitizers. A systematical mechanism study reveals that the uniformly organized photosensitive and photothermal single-sites have synergistic effect, which form ultrashort pathways for efficient transport of photoinduced electrons, suppress the recombination of photogenerated charge carriers, hence promote the hydrogen evolution activity. This work provides a promising approach for organizing dual-functional single-sites uniformly in photocatalyst for high-performance photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call