Abstract

We extend and refine the theory of “organizing modules” of Mazur and Rubin to construct a canonical class of matrices that encodes a range of information about natural families of complexes in arithmetic. We then describe several concrete applications of this theory including the proof of new results on the explicit structures of Galois groups, ideal class groups, and wild kernels in higher algebraic K-theory and the formulation of a range of explicit conjectures concerning both the ranks and Galois structures of Selmer groups of abelian varieties over finite (nonabelian) Galois extensions of number fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.