Abstract

Organized self-assemblies of Janus catalytic motors, induced by hydrophobic surface interactions involving multiple motor/motor and motor/nonmotor particles, display controlled coordinated self-propulsion. The influence of the self-assembled structures upon the motion behavior is investigated. A dynamic 'on-the-fly' assembly is observed during the continuous movement of the individual components, along with changes in the motion behavior. Organized assemblies of multiple motor/nonmotor particles are also illustrated toward optimal cargo transport and delivery. Such controlled structures and motion of chemically powered Janus micromotor assemblies hold considerable promise for the creation of intelligent nanomachines that perform collective tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.