Abstract

During embryonic development, organisms are sensitive to changes in thyroid hormone signaling which can reset the hypothalamic-pituitary-thyroid axis. It has been hypothesized that this developmental programming is a ‘predictive adaptive response’, a physiological adjustment in accordance with the embryonic environment that will best aid an individual's survival in a similar postnatal environment. When the embryonic environment is a poor predictor of the external environment, the developmental changes are no longer adaptive and can result in disease states. We predicted that endocrine disrupting chemicals (EDCs) and environmentally-based iodide imbalance could lead to developmental changes to the thyroid axis. To explore whether iodide or EDCs could alter developmental programming, we collected American alligator eggs from an estuarine environment with high iodide availability and elevated thyroid-specific EDCs, a freshwater environment contaminated with elevated agriculturally derived EDCs, and a reference freshwater environment. We then incubated them under identical conditions. We examined plasma thyroxine and triiodothyronine concentrations, thyroid gland histology, plasma inorganic iodide, and somatic growth at one week (before external nutrition) and ten months after hatching (on identical diets). Neonates from the estuarine environment were thyrotoxic, expressing follicular cell hyperplasia (p = 0.01) and elevated plasma triiodothyronine concentrations (p = 0.0006) closely tied to plasma iodide concentrations (p = 0.003). Neonates from the freshwater contaminated site were hypothyroid, expressing thyroid follicular cell hyperplasia (p = 0.01) and depressed plasma thyroxine concentrations (p = 0.008). Following a ten month growth period under identical conditions, thyroid histology (hyperplasia p = 0.04; colloid depletion p = 0.01) and somatic growth (body mass p<0.0001; length p = 0.02) remained altered among the contaminated sites. This work supports the hypothesis that embryonic EDC exposure or iodide imbalance could induce adult metabolic disease states, thereby stressing the need to consider the multiple environmental variables present during development.

Highlights

  • Proper thyroid hormone signaling is necessary for metabolic regulation and growth

  • The area of hyperplasia and severity of hyperplasia were greater among AP and Merritt Island National Wildlife Refuge (MINWR) neonates compared to LWNWR neonates

  • Colloid depletion was significantly greater among AP and MINWR juveniles compared to LWNWR juveniles (p = 0.01)

Read more

Summary

Introduction

Proper thyroid hormone signaling is necessary for metabolic regulation and growth. A poor embryonic environment that induces hyperthyroidism or hypothyroidism can lead to organizational (permanent) changes that greatly alter juvenile and adult physiology [1,2]. When plasma concentrations are reduced, TRH, produced by the hypothalamus, travels to the anterior pituitary to stimulate thyrotropin (TSH) release, which in turn stimulates thyroid hormone production and secretion from the thyroid gland [6]. Using the example above, reduced proTRH gene expression in the neurons of the hypothalamus could dampen TSH release, despite depressed plasma thyroid hormone concentrations [5]. In this manner, the sensitivity of the HPT-axis to reduced thyroid hormone concentrations is decreased and a reduced metabolism and growth rate are maintained to increase chances of survival in a nutrient poor postnatal environment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call