Abstract

The extrageniculate visual thalamus of the cat is divisible into several major subdivisions but only one receives dense fiber projections from the striate cortex. In the present study, modern axon transport techniques and acetylcholinesterase histochemistry were used to examine the internal organization of this striate-recipient zone and some of its afferent and efferent connections. A detailed study of the corticothalamic fiber projections of the striate cortex clarified the topographic organization and boundaries of the striate-recipient zone. The nature and course of “projection lines” within the zone were defined and the subdivision was shown to correspond closely to a region of relatively weak acetylcholinesterase staining. Corticothalamic projections from two regions of the extrastriate visual cortex, area 19 and the medial division of the Clare-Bishop complex, converge with those from area 17 in the striate-recipient zone, but these extrastriate areas have more widespread projections to the extrageniculate thalamus than does the striate cortex. A weak subcortical projection to the striate-recipient zone was demonstrated, apparently originating in the superior colliculus. Retrograde tracing experiments indicated that the corticothalamic inputs of the striate-recipient zone are precisely reciprocated by thalamocortical projections. Extrageniculate thalamic projections to area 17 arise exclusively from this thalamic subdivision and are highly topographically ordered. The striaterecipient zone projects massively and apparently retinotopically to area 19 and to the medial division of the Clare-Bishop area, as well as area 21(a), but these extrastriate areas receive additional afferents from other subdivisions of the extrageniculate thalamus. These findings appear to rule out a “non-specific” functional role for the striate-recipient zone. In its topographic organization, its reciprocal connections with areas of the visual cortex, and its sheer volume, the zone seems comparable to the dorsal lateral geniculate nucleus and may be fairly considered a satellite of the geniculocortical system. Certain of the zone's organizational and connectional features may be clues to its functional role and its possible homologues in other mammalian forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.