Abstract

We present an alternative scheme to the widely used method of representing the basis of one-band Hubbard model through the relation I=I↑+2MI↓ given by Lin and Gubernatis (1993), where I↑, I↓ and I are the integer equivalents of binary representations of occupation patterns of spin up, spin down and both spin up and spin down electrons respectively, with M being the number of sites. We compute and store only I↑ or I↓ at a time to generate the full Hamiltonian matrix. The non-diagonal part of the Hamiltonian matrix given as I↓⊗H↑⊕H↓⊗I↑ is generated using a bottom-up approach by computing the small matrices H↑ (spin up hopping Hamiltonian) and H↓ (spin down hopping Hamiltonian) and then forming the tensor product with respective identity matrices I↓ and I↑, thereby saving significant computation time and memory. We find that the total CPU time to generate the non-diagonal part of the Hamiltonian matrix using the new one spin configuration basis scheme is reduced by about an order of magnitude as compared to the two spin configuration basis scheme. The present scheme is shown to be inherently parallelizable. Its application to translationally invariant systems, computation of Green’s functions and in impurity solver part of DMFT procedure is discussed and its extension to other models is also pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.