Abstract

Mouse and quail embryo fibroblasts were extracted with Triton X-100 and the resulting cytoskeletons were treated with gelsolin-like actin-capping protein (the 90-kDa protein-actin complex isolated from bovine brain). Staining of cells with rhodamine-conjugated phalloin or an antibody to actin did not reveal any actin-containing structures after treatment with the 90-kDa protein-actin complex. Extraction of actin was confirmed by SDS-gel electrophoresis. Immunofluorescence microscopy showed that vinculin and α-actinin were released from the cytoskeletons together with actin. However, myosin remained associated with the cytoskeleton after treatment with the 90-kDa protein-actin complex. The distribution of myosin in treated cells showed no significant difference from that in control cells: in both cases myosin was localized mainly in the stress fibers. Double-fluorescence staining showed the absence of actin in myosin-containing stress fibers of treated cells. The ultrastructural organization of actin-depleted stress fibers was studied by transmission electron microscopy of platinum replicas. On electron micrographs these fibers appeared as bundles of filaments containing clusters of globular material. It is concluded that myosin localization in stress fibers does not depend on actin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.