Abstract

Defence-response (DR) genes are candidates for the genetic functions underlying quantitative resistance to plant pathogens. The organization of three DR gene families encoding phenylalanine ammonia lyase (PAL), acidic PR-(pathogenesis-related) protein 5, and basic PR-5, or osmotin-like (OSM), proteins was studied in the potato genome. A bacterial artificial chromosome (BAC) library containing approximately 50,000 clones was constructed from high-molecular weight genomic DNA of the diploid potato clone PD59, a hybrid between Solanum tuberosum and S. phureja. BAC clones carrying one or more copies of the DR genes were identified and characterized by Southern hybridization, sequence analysis and genetic mapping. PAL, acidic PR-5 and OSM (basic PR-5) genes were all organized into gene families of varying complexity. The PAL gene family consisted of at least 16 members, several of which were physically linked. Four acidic PR-5 homologous were localized to a 45-kb segment on potato chromosome XII. One of these, PR-5/319, codes for the acidic thaumatin-like protein C found in intercellular fluids of potato. Nine OSM genes were organized at two loci: eight form a 90-kb cluster on chromosome VIII, and a single gene was found on chromosome XI. The topology of a phylogenetic tree based on PR-5 and OSM protein sequences from Solanaceae suggests a mode of evolution for these gene families. The results will form the basis for further studies on the potential role of these defence-related loci in quantitative resistance to pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call