Abstract

Iroquois proteins comprise a conserved family of homeodomain-containing transcription factors involved in patterning and regionalization of embryonic tissues in both vertebrates and invertebrates. Earlier studies identified four murine Iroquois (Irx) genes. Here we report the isolation of two additional members of the murine gene family, Irx5 and Irx6. Phylogenetic analysis of the Irx gene family revealed distinct clades for fly and vertebrate genes, and vertebrate members themselves were classified into three pairs of cognate genes. Mapping of the murine Irx genes identified two gene clusters located on mouse chromosomes 8 and 13, respectively. Each gene cluster is represented by three Irx genes whose relative positions within both clusters are strictly conserved. Combined results from phylogenetic, linkage, and physical mapping studies provide evidence for the evolution of two Irx gene clusters by duplication of a larger chromosomal region and dispersion to two chromosomal locations. The maintenance of two cognate Irx gene clusters during vertebrate evolution suggests that their genomic organization is important for the regulation, expression, and function of Irx genes during embryonic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.