Abstract

An important goal of COVID-19 surveillance is to detect outbreaks using modern molecular epidemiology techniques based on methods to decode the full genome of the virus, since rapidly evolving RNA viruses, which include SARS-CoV-2, are constantly accumulating changes in their genomes. In addition to using these changes to identify the different virus lines spreading in the population, the availability of sequence information is very important. It will allow the identification of altered variants that may be more transmissible, cause more severe forms of disease, or be undetectable by existing diagnostic test systems. The global scientific community is particularly interested in changes in the spike protein (S-protein, Spike) because they are responsible for binding and penetration into the host cell, lead to false-negative results in diagnostic tests, and affect transmission rates, health outcomes, therapeutic interventions, and vaccine efficacy.Genomic surveillance uses next-generation sequencing (NGS) applications and makes data on the full genome of the virus available. These methods offer new means to detect variants that differ phenotypically or antigenically. This approach promotes earlier prediction as well as effective strategies to mitigate and contain outbreaks of SARS-CoV-2 and other new viruses long before they spread worldwide.Today, molecular typing of strains is playing an increasingly important role in this process, as it makes it possible to identify samples that share a common molecular «fingerprint».

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call